MATHEMATICS

STRUCTURE AND SCHEME OF THE EXAMINATION

The examination will consist of **two** papers: Paper 1 will be Objective Test and Paper 2 will be Essay.

1. PAPER 1 (OBJECTIVE)

This will consist of 40 compulsory objective questions and will last for 1 hour. This will carry 40 marks.

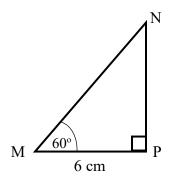
2. **PAPER 2 (ESSAY)**

This will consist of six questions and candidates are expected to answer four out of the six questions. The Paper will last 1 hour and will carry 60 marks.

3. WEIGHTING OF THE EXAMINATION

Paper	Marks	Scaling factor	Total marks
1 (Objective)	40	1	100
2 (Essay)	60	1	

SAMPLE QUESTIONS


PAPER 1 (OBJECTIVE)

- 1. Write 2,748,595 correct to the nearest 10,000.
 - A. 2,700,000 B. 2,740,000
 - C. 2,750,000
 - D 2,800,000
- 2. Find the product of 0.0409 and 0.0021, leaving the answer in standard form.
 - A. 8.589×10^{-6}
 - B. 8.589×10^{-5}
 - C. 8.589×10^4
 - D. 8.589×10^5

- 3. A student spent 1/4 of her money on books and 1/3 on transport. What fraction of the money was left?
 - A. 7/12
 - В. 5/12
 - C. $^{6}/_{7}$
 - $\frac{5}{7}$ D.

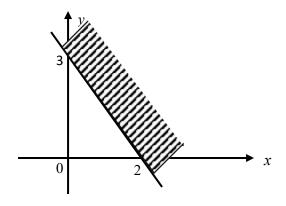
Given that $P = \{b, d, e, f\}$ and $Q = \{a, e, f, g\}$ are subsets of the universal set $\Box = \{a, b, c, d, e, f, g\}.$

- 4. Find $P \square Q$.
 - A. {*e*, *f*}
 - ${a, b, d, e, f, g}$ В.
 - C. $\{a, b, g\}$
 - ${a, b, d, g}$ D.
- 5. Convert $3\frac{1}{5}$ to a decimal fraction.
 - 3.7 B. 3.6 C. 3.3
 - D. 3.2

Not Drawn to Scale

In the diagram, $\Box PMN = 60^{\circ}$, |MP| = 6 cm. |. [Take tan $60^{\circ} = \sqrt{3}$]

- 6. Find the length of |NP|.
 - $6\sqrt{3}$ B.
- $3\sqrt{6}$ C. $2\sqrt{6}$ D.
- $2\sqrt{3}$


7. Simplify: $\sqrt{2} + \sqrt{3} + \sqrt{8} + \sqrt{27}$

A.
$$3\sqrt{2} + 4\sqrt{3}$$
 B. $4\sqrt{2} + 3\sqrt{3}$ C. $2\sqrt{2} + 3\sqrt{3}$ D. $3\sqrt{2} + 2\sqrt{3}$

$$4\sqrt{2} + 3\sqrt{3}$$
 C.

$$2\sqrt{2} + 3\sqrt{3} D$$

$$3\sqrt{2} + 2\sqrt{3}$$

- 8. Which of the following inequalities represents the shaded region in the diagram?
 - $3x + 2y \square 6$ A.
 - $3x + 2y \le 6$ C. В.
- $2x + 3y \square 6$
- $2x + 3y \le 6$ D.
- 9. Given that vector $\mathbf{m} = (-3_1)$ and $\mathbf{n} = (-1^4)$, evaluate $2\mathbf{m} \mathbf{n}$.
 - (10_3) A.
 - B. (-103)
 - (-310)C.
 - (--103)D.
- 10. A fair die and a fair coin are rolled together once. Find the probability of obtaining a head and an even number.
 - 1 A. 4
 - B. 1 3
 - C.
 - D.

PAPER 2 (ESSAY)

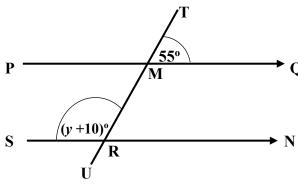
Answer four questions only.

All questions carry equal marks

- 1. (a) Simplify: $7\frac{1}{2} (2\frac{1}{2} + 3) \div \frac{33}{2}$
 - (b) Philip and Emelia shared a number of oranges in the ratio 3: 5. If Emelia received 20 more oranges than Philip, find the total number of oranges they shared.

[15]

- **marks**] 2. Awo shared 80 acres of land among her 3 children. She gave 5 acres to the first child for taking care of the land and shared the rest of the land equally among the three children.
- (a) How many acres of land did the first child have?
- (b) What percentage of the land did the other children have?


[15 marks]

- 3. A fair coin is tossed **twice**.
- (a) List all the possible elements in the sample space.
- (b) Find the probability of obtaining:
- (i) a head and a tail;
- (ii) exactly two tails;
- (iii) no tail;
- (iv) at least one tail.

[15 marks]

4. (a) Solve:
$${}^{3}h + {}^{1}(21 - h) = 12$$

In the diagram, PQ is parallel to SN and UT is a transversal. Angle $QMT = 55^{\circ}$ and $\square SRT = (y + 10)^{\circ}$.

Not Drawn to Scale

(b) Find the value of y.

[15 marks]

5. The data shows the marks obtained by 10 students in a test.

- (a) range;
- (b) median; (c) mean.

[15 marks]

6. A ladder leaned against a school building at a point P from the same horizontal ground. The angle of elevation from the foot of the ladder to P is 60° and the distance from the foot of the ladder to the base of the building is 3m.

[Take
$$\cos 60^{\circ} = \frac{1}{2}$$
 and $\tan 60^{\circ} = \sqrt{3}$]

- (a) Illustrate the information in a diagram;
- (b) Find the
- (i) length of the ladder;
- (ii) height of the building at point P.

[15 marks]